國際量子分子科學(xué)院院士高加力教授做客第301期化苑講壇
報告題目:Functional protein dynamics on enzyme catalysis
報 告 人 :高加力教授
報告時間:2017年11月13日(周一)上午9:00
報告地點:化學(xué)樓二樓一號會議室
報告人簡介:
高加力,教授,國際量子分子科學(xué)院院士,國家計劃。1982年在北京大學(xué)獲得學(xué)士學(xué)位,1987年在美國普渡大學(xué)獲得博士學(xué)位,同年前往美國哈佛大學(xué)從事博士后研究。1990-1994年擔(dān)任美國紐約州立大學(xué)助理教授,1994-1997年擔(dān)任美國紐約州立大學(xué)副教授,1997-1999年擔(dān)任美國州立大學(xué)教授,2000年-至今,擔(dān)任美國明尼蘇達(dá)大學(xué)教授。高加力教授一直致力于生物大分子體系的研究。主要包括蛋白動力學(xué),酶催化,生物體系反應(yīng)及分子自組裝,生物物理和計算方法的發(fā)展。目前主要致力于以下幾個方面的研究:1)生物大分子體系全量子化學(xué)方法;2)多態(tài)密度泛函理論;3)生物分子的相互作用與酶催化;4)溶劑效應(yīng)、反應(yīng)活性與物質(zhì)結(jié)構(gòu)的研究。
高加力教授曾獲世界理論導(dǎo)向化學(xué)家協(xié)會(WATOC)頒發(fā)的狄拉克獎?wù)隆鼗舴蚵菽昙o(jì)念獎、IBM學(xué)院獎學(xué)金等國際大獎。獲邀擔(dān)任美國化學(xué)會Journal of Chemistry Theory and Computation(JCTC)副主編、Theoretical Chemistry Accounts(TCA)、Journal of Theoretical and Computation Chemistry(JTCC)等國際期刊的高級編輯。
高加力教授已在Science, Chem. Rev., Acc. Chem. Res, PNAS, Angew. Chem. Int. Ed.和JACS等國際著名刊物上發(fā)表學(xué)術(shù)論文230余篇,累計被引用3.6萬余次,h-index為76。
報告內(nèi)容簡介:
Enzymes are remarkable catalysts that can accelerate the reaction rates as much as 20 orders of magnitude. For example, orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange of CO2 for a proton at the C6 position to form uridine 5'-monophosphate (UMP) with a rate increase of 1017 relative to the uncatalyzed reaction. In this talk, I will present analysis of the effect of protein dynamic fluctuations from combined quantum mechanical and molecular mechanical simulations of two proteins. It was found that specific dynamic motions of the proteins are intimately coupled to the function and catalytic mechanism of the catalyzed reactions, by directly affect activation barrier and by controlling the access of water in the active site. In one case, even small changes in the position of the substrate OMP could increase the barrier height by 5 to 10 kcal/mol due to hydrogen bonding interactions. In the LOV domain, a photoreceptor protein, distance mutations significant alter a gating mechanism for water access in the active site and its dark-state recover rate. Analyses of molecular dynamics trajectories help reveal the interplay of protein conformational dynamics and access of water in the active center of the proteins.